FLYING LESSONS uses the past week’s mishap reports to consider what might have contributed to accidents, so you can make better decisions if you face similar circumstances. In almost all cases design characteristics of a specific make and model airplane have little direct bearing on the possible causes of aircraft accidents, so apply these FLYING LESSONS to any airplane you fly. Verify all technical information before applying it to your aircraft or operation, with manufacturers’ data and recommendations taking precedence. You are the pilot-in-command, and are ultimately responsible for the decisions you make.

FLYING LESSONS is an independent product of MASTERY FLIGHT TRAINING, INC. www.mastery-flight.training.com

This week’s lessons:

Let’s stop doing this to one another. I was in San Antonio, Texas, last weekend for Beech Bonanza recurrent training in a flying club A36. The night before my return home I checked the Forecast Icing Potential (FIP) page of the FAA’s aviation weather website, and learned of forecast moderate or great icing from the surface to over 9000 feet across most of Oklahoma and southern Kansas. Some areas further warned of supercooled, large droplet ice, which can cause heavy accumulations of clear or mixed ice in very short periods of time, and are beyond the certification requirements even of ice-certified (“known ice”) airplanes. Obviously, I was going nowhere the next morning.

See:
wwwbppp.org
http://aviationweather.gov/adds/icing/icing_nav.php
www.aviationweather.gov
http://webs.wichita.edu/?u=ICING&p=/SLD/

A double-check the next morning confirmed the previous forecast, the point further emphasized by a couple early-morning pilot reports (PIREPs) of ice. I had the airplane scheduled to return at 1 pm but extended the reservation through the full day, since it appeared a cold front might clear the skies in the afternoon.

But another pilot was scheduled to take the Bonanza to St. Louis and back the following day, I learned when I checked the club’s online schedule. I looked up the pilot’s contact information in the club directory and sent him a message: I was delayed by ice, there was still a chance I would be able to get home that day, but I wanted him to have as much time to make alternate arrangements if I could not make it back.

A little later I checked my smart phone and found an email reply: “I have the aircraft scheduled to do [a volunteer medical transportation] flight for two cancer patients,” he wrote. “A noble cause,” I typed in reply. “I'll let you know as soon as possible if I cannot make it back in time for your flight.”

Now, I do not suspect the other pilot was attempting to influence my decision-making in any way, or pressure me to alter my plans by linking my schedule to his assisting the victims of a terrible medical condition. But I could immediately see how such a simple statement, even inadvertently, could perhaps compel a less experienced pilot to go against the airplane’s certification and his/her personal minimums, or push someone who was teetering on the edge of a questionable go/no-go decision over the edge against his/her better judgment, thinking their weather evaluation should in some way change because of what someone else did or was going to do.

The entire volunteer medical flight network is under regulatory scrutiny as a result of a number of fatal accidents, most due to attempting flight in adverse weather, the pilot apparently choosing to fly in questionable conditions because of the perceived “mission” of volunteer, non-emergency transportation of ambulatory patients. In fact, NTSB has just announced a Volunteer
Pilot Safety Stand-down to continue Federal efforts to improve the “charity medical flight” safety record.

See www.abuys.com/pilotsafety/

Back to my point, a less-experienced pilot might have let this new information, that the airplane was “needed” for a generous charity trip that would make life a little easier for two cancer patients needing to travel a few hundred miles, unduly influence his/her decision to wait until forecast icing conditions blew away. I could even see myself being tempted to take off sooner if this came when I was fighting additional pressures to get home quickly, combined with the natural “can do” mentality of pilots.

We may all do this inadvertently when we “talk up” our exploits in hangar flying sessions, or make broad statements in the context-void world of internet chat rooms, or radio the next pilot that “it’s ok, I made it.” You never know the experience level of persons in the audience, or the other factors they’re facing that might add to the impression they get from your input.

Yes, we are all responsible for the decisions we make as pilot-in-command. But accident history shows that we are also susceptible to suggestion where our no/go-go and continue/divert decisions are concerned.

So consider your audience even when making seemingly innocent or unrelated statements to other pilots. Give solid facts, but avoid persuasion. We’re in this together…provide good information, accurate information, but try to withhold anything that provides no benefit if mentioned but has the potential for harm if taken out of the context you intend.

Comments? Questions? Tell us what you think at mastery.flight.training@cox.net.

Thanks to AVEMCO Insurance for helping bring you FLYING LESSONS Weekly.

See www.avemco.com/default.aspx?partner=WMFT.

Do you have an aviation safety-related product or service you’d like to see associated with FLYING LESSONS Weekly? Contact mastery.flight.training@cox.net for sponsorship information.

Readers, you can help too. Every little bit helps cover the expenses of keeping FLYING LESSONS online. Show your personal support through a secure PayPal donations button at www.mastery.flight.training.com. Thank you, generous supporters!

Debrief: Readers write about recent FLYING LESSONS:

Reader Tom Rosen adds to the most recent FLYING LESSONS on avoiding hard landings:

You didn't mention slot recognition and the importance of remaining stabilized in the slot (on G/S) during the last minute before touchdown. Dragging it in low or a steep descent with high sink rate usually leads to an unsatisfactory result. On the other hand, being able to recognize a 3% slot and being able to repeat it over and over will lead to consistently good landings.

Thanks, Tom. You’re absolutely right—in addition to last report’s focus on airspeed control is the other part of the equation, glidepath control. The two work in concert to result in safe, repeatable landing performance. If you’re not both on speed and on glidepath as you cross the threshold, you are probably best served by going around and trying it again. Note that in most cases a 3° descent angle works, however, short field landings may require a 5° or even 6° final approach glidepath if there are obstacles to clear just short of the landing zone. Glidepath and airspeed
control, for normal, crosswind, short- and soft-field landings, is an oft-overlooked but great topic for your next brush-up with a flight instructor or your next required Flight Review or equivalent.

Several readers took the time to comment on FLYING LESSON’s campaign to address the Top 10 causes of fatal general aviation accidents with a new slant on techniques to teach avoidance of the most common reasons people die in general aviation aircraft:

I appreciate the time and energy you put into the content of your newsletter. It is my firm belief that pilots who read/talk about safety are those who apply risk management during the flight and, if not consciously, considers the “news headline” or the story they would tell the FAA before acting.—David Wallace

It has been a long time since I developed a lesson plan. However, I think the industry is moving in the right direction by incorporating decision making into the overall syllabus. But how do you incorporate the checking of your fuel load before every flight? Yes, you can insist on that during training. Things change when your former student, now [a] Private Pilot, buys his/her own airplane. I think the temptation is very high to skip a thorough preflight inspection on every flight. After all, I just flew the plane yesterday, or 2 hours ago, what have you. The problem is, pilots are pretty happy to launch into the wild blue believing that they “think” they have enough fuel. If you were to question them about it, they would be lucky to know what the fuel burn rates were for different phases of flight. "I think" is not good enough. People just get sloppy in how they approach flying.

That is why I think recurrent training is so valuable. The biennial [every two years] Flight Review is too long a period. Of course, this brings up the wide variation in what any CFI requires for a satisfactory FR. Also, many pilots will shop around for the easiest CFI they can find.

There is no easy fix to the fatal GA accident rate. One lesson plan is not going to make the problem go away. There is no one standard for CFIs to teach to. By this I mean that besides meeting the requirements for FAR 61 or FAR 141 [or 142], there are scenarios all students should be exposed to. Then there is the issue of recurrent training. I think the FR is well intended, but falls far short of being beneficial to reducing the accident rate. At a minimum, it should be required annually and have meaningful syllabus requirements. Much of this could be accomplished on simulators such as the Redbird. Even the [AOPA] Air Safety [Institute] series of scenarios is beneficial to pilots if they take the time to do them.

I realize that requiring more stringent annual recurrent training will drive some people to drop out of aviation, or just fly illegally. So the question becomes, do you want safer skies, or more people flying?

Maybe automation will go a long way toward our safety goal. This means taking the human pilot out of the control loop temporarily while the automation keeps the aircraft within its performance envelope. It is already here with the ESP autopilot that Cirrus is installing in its new aircraft. All that is left is judgment; that too might be taken over by automation. I for one, do not like the idea very much since the operation of the plane and successfully completing the flight in varied conditions is what keeps me interested in flying. However, automation is coming whether we like it or not.—David Heberling

I applaud your mission for this year and I think you are right on target. I enjoy every issue of Mastery Flight Training [FLYING LESSONS]. Keep up the great work!—Rick Garner

In 1975 military aviation was surveyed as being the most dangerous job in the world. As I was Flight Engineer at that time I could attest to that rating. We were subjected to new flight regimes such as nap of the earth flight. It was thought that flying below treetop level and speeds in excess of 90 knots would deter enemy detection. But the margin for error was slim. We were training for the Cold War threat after Vietnam and it was long hours of day and night flying, and then we were introduced to the night vision goggle training which further increased the risk.

In the 1980s the [U.S.] military initiated a program called mission risk assessment. It involved such things as “Where are we going? Are there any risks such as power lines, antennas or other obstructions along our route of flight? What are my emergency alternatives and how much fuel will I need to return to my point of departure?”

As a flight instructor I have flown in the US and Europe and applied the mission risk assessment with my students. Flight safety is a team effort, [including] the pilot, the weather briefer, [and the] flight instructor that you use for your flight review. As Clint Eastwood once said: “A man has to know his limitations.”—Edward Ludwig

I absolutely do not have the answers but this month’s scenarios points out that the cockpit is the absolutely worst place to make certain decisions. Sitting at a desk or in your living room chair allows you to develop safer conclusions without risking your life. I have six [tenets] in my personal Operations Manual developed from experience at Cessna, NetJets and just plain flying for 50+ years:

1. Don’t fly when you are sick or tired. Part 91 has no duty time requirements. Fatigue creeps up on you and then it may be too late. Twelve hours is my maximum duty day. This includes going to work and doing other
chores that pay for flying.

2. Stay away from weather you cannot handle, and have equipment and training to make decisions for these situations.

3. Always have enough performance for takeoffs, departures and landings

4. Avoid situations beyond personal and equipment capabilities

5. Create a home- or office-based flight following system

6. Plan flights based on aircraft endurance, and stick to your decision.

Some of the above procedures may seem obvious. Writing them down will keep the pilot from making the wrong decision in the heat of the moment.—Charles Lloyd

While even one accident is too many, why is the government (via the FAA) picking on general aviation? The rules and regulations surrounding GA are weighty and onerous, while other accident-prone activities such as motocross, extreme snowboarding, and riding a motorcycle without a helmet are virtually ignored? Almost seems like this is a subtle way to regulate GA out of existence under the guise of safety.—Jay Graph

Hi, Jay. We U.S. pilots do indeed seem to be the focus of considerable regulation. Post-9/11 security-related rules and environmental issues (where lead is all but eradicated from emissions except from 100LL fuel) aside, as you suggest our regulations are primarily written as a result of deaths in aircraft. Why aren't motorcyclists and snowboarders, etc., not subject to the same scrutiny? I think the answer is threefold:

1. Although motorcycling can be an exception, in most cases the other activities do not carry unsuspecting passengers who depend on our skill and safety to make it to their destination—FAA rules don't so much protect the pilot, but instead the passengers and those below us on the ground. A good example of this is the rule requiring Emergency Locator Transmitters (ELTs), which are not required in single-seat airplanes. Another is the FAR 61.57 90-day landing currency and night landing currency requirements, which only apply to flight with passengers. We pilots are permitted great leeway to take risks ourselves, but when others are involved there are stricter rules to protect them.

2. Flying is much less forgiving than these other activities. The consequences of poor judgment or systems failures are far greater when begun from the air.

3. We portray ourselves to the public as daredevils. With extremely few exceptions, the public's exposure to general aviation consists of low-altitude extreme aerobatics presented in air shows (did you read the last five paragraphs of my report on Fatal Accidents Cause #9 last week?) and harrowing incidents and crashes that you know are going to result when you see characters of a movie or television show board a light airplane. Although the public is still fascinated with aviation (look at non-pilot attendance at major air shows and military-base open houses), there is no public perception of general aviation as a safe, enjoyable and somewhat affordable transportation or recreational activity.

Back when the very popular TV show ER was in production I asked leaders at AOPA to lobby the show's writers to make one of the characters a pilot, and occasionally mention or show that character use the airplane in a safe and completely uneventful trip that furthers to plot, maybe depicting a volunteer medical mission or organ transplant flight as well...just show a typical GA pilot doing typical GA things that result in typically safe outcomes. Maybe there are similar opportunities to put general aviation in a good public light yet today.

FAA answers to Congress and the general public; since we continue to make bad decisions and crash with such regularity, often taking passengers with us and seemingly more commonly crashing into houses and people on the ground, it's to be expected we will have rules imposed to try to prevent the same thing from happening again. In other words, if we all trained and practiced and made decisions like we
know we should, it’s much more likely the government would not feel the need to protect the public from our activities.

“Contrary to what most people believe, the single largest expense of owning an airplane is not insurance, nor is it fuel, nor maintenance, nor hangar costs. Instead, the single largest expense is the negative attitude (or is it fear) of the public regarding general aviation”—Bob Miller, Over the Airwaves (http://overtheairwaves.com/)

See:
http://tinyurl.com/4nq7jp4

What’s your opinion? Tell us at mastery.flight.training@cox.net.

We have been focusing on the 10 most common causes of fatal general aviation mishaps according to the U.S. Federal Aviation Administration. This month we turn our attention to Top 10 Cause #8: Loss of Control En Route/During Cruise.

To begin, review the following summaries of some of the accidents that make up this category of accident (although some don’t seem to fit the category title, I’m sticking with the FAA’s breakdown to conform with any similar studies). Then, after some thought, send in your observations on the circumstances that may underlie each cause, your ideas for FLYING LESSONS that teach techniques for avoiding similar mishaps, and proposed amendments to checkride preparation and recurrent training lesson plans to get these LESSONS to the pilot who need them most. Be sure to identify the scenario number in each of your comments.

Scenario #1
The certified flight instructor and the private pilot were returning to the airport after completing a flight review. Data obtained from the onboard primary flight display revealed that as the airplane approached the airport, it entered a snap roll maneuver. The airplane collided with terrain inverted approximately one-quarter of a mile from the airport. Examination of the airframe and engine revealed no pre-mishap anomalies.

Scenario #2
The private pilot was reported overdue and an emergency locator transmitter signal was detected. The airplane had collided with terrain in a near vertical, nose down attitude. VMC prevailed. Examination revealed the engine was developing power at the time of impact. No preimpact malfunctions were discovered. The position of the airplane was indicative of a stall while maneuvering at low altitude.

Scenario #3
The pilot was receiving instruction toward a multiengine rating. The syllabus for the flight included introduction to engine failures on takeoff and initial climb and approaches and landings with an inoperative engine. The airplane was observed climbing at slow rate of speed after takeoff. When the airplane reached 600 to 800 feet AGL it began a left turn, consistent with a return to the airport, followed by a nose-down descent into trees. Examination of the wreckage did not reveal evidence of any preimpact malfunctions. The CFI had accumulated about 111 hours of total multiengine flight experience, all in the same make and model as the accident airplane. He received his CFI rating about 3 weeks prior to the accident and had accumulated about 60 hours of multiengine flight experience as a CFI.

Kick off the discussion of Top 10 Cause #8 with your comments and ideas at mastery.flight.training@cox.net.

Two weeks ago I reported on taking a demonstration flight of an angle of attack indicators, writing:

“…hold speed, vary bank and the angle of attack varies. The steeper the level turn, the higher the angle of attack. It doesn’t take a nose-high attitude to stall the airplane, just a little extra “pull” or bank while trying to turn in level flight…and when it does stall, it does so at higher-than-book stalling speeds….”

©2011 Mastery Flight Training, Inc. All rights reserved.
Reader and AoA advocate Fred Scott reminded me this is not precisely correct, that most Pilot’s Operating Handbooks do contain a table from which you can derive level-flight stall speeds when in constant-altitude banked turns. I glossed over that in the brevity of my report, but should have more correctly written “...when it does stall, it stalls at higher-than-wings level speeds...not at the “book” speeds we’re taught to memorize.” Thanks, Fred, for reminding me to provide the most-correct answer.

Reader and professor emeritus of U.S. Naval Academy aeronautical engineering Dr. Dave Rogers adds:

> Your comment in this week’s FLYING LESSONS about it only takes a little extra pull or bank angle while turning is exactly what I showed both analytically and practically with a tuffed wing. If fact, it takes approximately one degree angle of attack increase between stall "warning" and "full stall." Conversely it takes approximately one degree angle of attack decrease to "unstall" the wing - unless, of course, you have been completely ham-handed.

Thank you, Dave!

Annual Nall Report Quantifies Accident Rates

The AOPA Foundation has released the 2011 Nall Report, analyzing NTSB-reportable general aviation accident statistics for 2009 ("the [most recent] year for which enough accident data are available to be statistically valid and give a complete safety picture."). ASI’s overall conclusions include:

- Commercial GA operations – those conducted for compensation – showed a marked improvement is [sic] their safety numbers.
- The commercial helicopter accident rate increased slightly from 2008, but is still markedly better than it was....

And under “Areas of concern,” ASI reports:

- Accidents due to mechanical causes happened at a statistically significantly higher rate in 2009, accounting for a record-high 17% of all non-commercial fixed-wing accidents…. More than half the fatal mechanical accidents occurred in amateur-built airplanes.
- Personal flights accounted for well under half of all non-commercial fixed-wing flight time but had more than three-quarters of all accidents and nearly 85% of fatal accidents.
- A surprisingly high number of the accidents involved commercial and airline transport pilots…on personal flights: 60% of all accidents involved commercial pilots and 67% of those [were] suffered by ATPs.

The 2011 Nall Report is available free on the AOPA Aviation Safety Institute website.

See www.airsafetyinstitute.org/nall

Aviation Human Factors and Safety Management Systems

Dallas, Texas March 29-30, 2011

The third annual interactive seminar will discuss research issues, academic challenges, and system advances for human factors and safety management systems in real-world operations. The goal is to meet and share information cutting across operational domains: Part 91, 121, 135, 141, 142, 147, fixed-wing and rotorcraft. Sixteen phenomenal speakers will discuss operational lessons learned and progress of their research. Attendees will have an opportunity to discuss their concerns and needs for human factors tools and safety system solutions. The agenda and speakers’ C.V.s are posted on event organizer Kent Lewis’ (a FLYING LESSONS reader) website. Registration is still available for the event (if it didn’t conflict with my duties at Sun ‘n Fun I’d be there!). If you attend, FLYING LESSONS Weekly would very much like to hear your critique and review.
Four-Week Fatal Accident Analysis Webinar: Critical Lessons Learned from the Mishaps of Others

Bob Miller Flight Training has kicked off a four-part aviation safety webinar focusing on many of the same issues as FLYING LESSONS. Although the first part will have taken place by the time you read this, the remaining three still command your attention on Tuesday nights U.S. Eastern time. Bob Miller “dramatically explores each link in the accident chain of several dozen classic fatal mishaps. Like going to the doctor for immunizations, each participant will be inoculated against the major causal factors that contribute to our unrelenting GA fatal accident rate.” Subscribers can also download the program for later viewing.

Four-Week Fatal Accident Analysis Webinar: Critical Lessons Learned from the Mishaps of Others

Bob Miller Flight Training has kicked off a four-part aviation safety webinar focusing on many of the same issues as FLYING LESSONS. Although the first part will have taken place by the time you read this, the remaining three still command your attention on Tuesday nights U.S. Eastern time. Bob Miller “dramatically explores each link in the accident chain of several dozen classic fatal mishaps. Like going to the doctor for immunizations, each participant will be inoculated against the major causal factors that contribute to our unrelenting GA fatal accident rate.” Subscribers can also download the program for later viewing.

See: www.bobmillerflighttraining-online.com/Webinar/BMFTOnlineUpcomingWebinars.htm

2011 General Aviation Awards

The Federal Aviation Administration’s General Aviation Awards program is proud to name this year’s National GA Award winners:

2011 Nat'l Certified Flight Instructor (CFI) of the Year
Judy Ann HEPHLS, MCFI-A, Santa Paula, CA
Judy is a 3-time Master CFI-Aerobatic who resides in Santa Paula, California. Specializing in spin, tailwheel, and emergency maneuver training, she also instructs private, commercial, and instrument students with CP Aviation (http://www.CPAviation.com) at Santa Paula Airport (SZP). A member of AOPA, EAA, SAFE & Women in Aviation, she is a FAASTeam representative and volunteers with The Ninety Nines as well as the International Aerobatic Club (IAC). Judy represented the Van Nuys FSDO area (FPMs: Karla Borden & Ross Gregory) as well as the FAA’s Western Pacific Region.

2011 Nat'l FAASTeam Representative of the Year
Vicki Lynn SHERMAN, MCFI, DeLand, FL
A 3-time Master CFI from DeLand, Florida, Vicki is a flight, ground, and simulator instructor who sponsors and teaches WINGS seminars. Since 1992, she has been a crewmember at the FAA Production Studios in Lakeland. A member of AOPA, SAFE, EAA & Women in Aviation, she is a past international president of the Ninety Nines and volunteers with the National Aviation Safety Foundation. She is one of 3000 volunteer aviators who serve as FAASTeam representatives in the FAA’s safety program nationwide. Vicki represented the Orlando / North Florida FSDO area (FPMs: Fred Kaiser, Bob Dunton & Mark Lawhrige) and the FAA’s Southern Region.

2011 Nat'l Aviation Maintenance Technician (AMT) of the Year
Joseph "Joe" MORALES, A&P / IA, Lakewood, CO
A resident of Lakewood, Colorado, Joe is the quality control manager and repair station chief inspector for Doss Aviation, Inc at the United States Air Force Academy. Doss Aviation (http://www.DossAviation.com/) maintains more than 50 aircraft in support of various USAFA flight training activities. Joe is an A&P mechanic with inspection authorization and a certificated flight instructor. A member of the AMT Society and AOPA, he is a FAASTeam representative and a captain in the Civil Air Patrol. He represented the Denver FSDO area (FPMs: Gina Moretto & Brian Richardson) as well as the FAA’s Northwest Mountain Region.

2011 Nat'l Avionics Technician of the Year
Russell John "Russ" CALLENDER Jr, Repairman, Houlton, WI
Russ is a resident of Houlton, Wisconsin and owns RC Avionics, Inc (http://www.RCAvionics.com/Home.html) located on the Anoka County-Blaine Airport (ANE) in Blaine, Minnesota. He holds a private pilot certificate, a repairman certificate, and has been servicing aircraft for more than 30 years. A member of the Aircraft Electronics Association (AEA), AOPA & EAA, he specializes in computer drafting and redesign of aircraft instrument panels. Russ represented the Minneapolis FSDO area (FPMs: James Niehof & Alan Hoffert) as well as the FAA’s Great Lakes Region.

Support and sponsorship for the General Aviation Awards program is provided by Women in Aviation International (WAI), The Society of Aviation and Flight Educators (SAFE), the Professional Aviation Maintenance Ass’n (PAMA), the National Business Aviation Ass’n (NBAA), the National Ass’n of State Aviation Officials (NASAO), the National Air Transportation Ass’n (NATA), the General Aviation Manufacturers Ass’n (GAMA), the Federal Aviation Administration (FAA), the Experimental Aircraft Ass’n (EAA), the Aircraft Maintenance Technology Society (AMT Society), the Aircraft Owners and Pilots Ass’n (AOPA), the Aeronautical Repair Station Ass’n (ARSA), and the Aircraft Electronics Ass’n (AEA).

©2011 Mastery Flight Training, Inc. All rights reserved.
Congratulations to each of the National award winners, as well as the many Regional and FSDO-level award winners and nominees who represent the very best in flight training, aircraft maintenance and aviation safety volunteerism!

Question of the Week

This week we ask:

Have you ever taken off, continued a flight or attempted an approach or landing against your better judgment because of something another pilot or controller said? What were the circumstances, and what was the outcome? How will you deal with similar circumstances if they arise again?

Let us know at mftsurvey@cox.net. Remember, your responses to the Question of the Week remain anonymous.

Last time we asked about the weather briefing products you use, and techniques you use to enhance your preflight and in-flight weather planning. Here’s what you said:

Because many of my flights are early morning departures, the paucity of early morning PIREPS is a problem. One of my Rules is that if the cloud bases or freezing level is below MEA, I do not fly unless the tops dictate a climb in clouds of 4,000ft or less. To get data of Cloud Tops, I keep the telephone numbers of my local approach control and several destination TRACONs. I call them from home and ask for tops and icing reports. Although they may not have them, they will always make an inquiry to the next few flight crews that they work. I can call the facility back in fifteen or twenty minutes and get good reliable data. I have called Evansville, Indianapolis, Dayton, Cincinnati and Chicago. All helpful. Giving PIREPS is a nice way to contribute to the well being of your fellow pilots.

For many years I’ve written that filing PIREPs is the “cost of admission” to the aviation weather briefing system. One of the very first AOPA online seminars (I think it may have been the very first), “Skyspotter: Pilot Reports Made Easy” is still a great program on using and filing PIREPs. See http://flash.aopa.org/asf/skyspotter/swf/flash.cfm?

I like to “drop a pilot report” on conditions from climbout and roughly once an hour in flight regardless of conditions. Think about it—arent reports of good conditions at least as valuable to you as PIREPs of bad when you’re trying to decide whether to launch or what direction or at which altitude to fly? Any time I contact FlightWatch for an en route update, I start by providing a PIREP on conditions at my current location. In this era of weather data uplinks it’s less easy to remember to file PIREPs, so maybe once an hour, each time you switch fuel tanks, or when you pass from one Center area or off the edge of a Sectional chart is a good time to let others know what conditions you’ve found.

Readers, what’s been your experience? Let us know at mftsurvey@cox.net.

For piston Beech pilots

The [Beech Weekly Accident Update](http://www.mastery-flight-training.com/beech_weekly_accident_updat.html) is now posted.

Fly safe, and have fun!

Thomas P. Turner, M.S. Aviation Safety, MCFI
2010 National FAA Safety Team Representative of the Year
2008 FAA Central Region CFI of the Year